with Pt-P = 2.224 (4) Å while the three equatorially bridging ligands are symmetrically disposed with Pt-Sn = 2.680(1) Å and $Pt-Sn-Pt = 57.87 (3)^{\circ}$. This beautiful geometry represents the face-sharing of two distorted tetrahedral PPtSn₃ fragments, which constitute a series with the P_2PtSn_2 configuration (1) and with the corresponding P_3 PtSn species (3), which we have also identified using NMR spectroscopy. The two Pt atoms are within bonding distance,¹⁸ and the strong coupling between them $[^{1}J(Pt-Pt) =$ 4663 Hz] is consistent with some degree of metal-metal bonding,19 as is ${}^{2}J(P-Pt) = 82$ and ${}^{3}J(P-P) = 81$ Hz. As for complex 1, nonplanar coordination is characteristic of Pt(0) while the ¹¹⁹Sn chemical shift (-563 ppm) is indicative of Sn(II). The narrow angle at the latter and the lengthening of Pt-Sn (0.12 Å) between compounds 1 and 2 incline us toward an interpretation based on delocalization of electron density between the five metal centers. Expressed in simple qualitative terms, this situation corresponds to interaction between three hybrid orbitals on each Pt with a single hybrid per Sn to give three bonding, three nonbonding, and three antibonding levels. The Pt(0) nuclei then retain "closed-shell" d^{10} character while the Sn(II) atoms each contribute an electron pair to fill the three delocalized bonding orbitals. Superficially there is a resemblance between structure 2 and that of [Me₂SnFe(CO)₄]₂, but the latter clearly incorporates quadrivalent tin and accordingly the angle at Sn is almost tetrahedral²⁰ with that at Fe quite narrow (77.4°). The electron count in another Sn(IV) derivative²¹ [{ $(\eta^5-C_5H_5)Fe(CO)_2$ }₂Sn₂Fe₃(CO)₉] is exact in terms of isolobal relationships²² for a closo cluster, but delocalized metal-metal bonding tentatively proposed in a somewhat similar platinum-tin(IV) cluster²³ [(C₈H₁₂)₃Pt₃(SnCl₃)₂] does not appear to have been discussed further. A more realistic molecular orbital description of the intermetallic bonding in compound 2 will necessarily take account of interaction involving overlap of unfilled orbitals of comparable energy with the Pt filled-shell orbitals, similar to that put forward by Dedieu and Hoffmann²⁴ for unbridged Pt(0)-Pt(0) complexes of the type Pt_2L_4 .

A comprehensive investigation of the properties of compounds typified by 1-3 is in progress, including development of related Ni and Pd chemistry. Since methanolic solutions containing chloroplatinic acid and stannous chloride provided the first effective catalyst for the reduction of ethylene under ambient conditions²⁵ and polynuclear Pt-Sn species have been implicated²⁶ in similar behavior, the possibility that the Pt(0)/Sn(II) systems will demonstrate parallel catalytic reactivity is being explored.

Acknowledgment. We thank the NSERC, Canada, for operating grants (G.W.B., S.R.S., and T.S.C.) and the University of Victoria for financial support, including graduate fellowships to D.T.E. and R.D.H.-S.; A.P. thanks the University of Sussex for leave of absence.

Registry No. 1, 82918-18-1; 2, 82918-19-2; Sn(acac)₂, 16009-86-2; $(PPh_3)_2Pt(\pi-C_2H_4)$, 12120-15-9; $Pt(PPh_3)_4$, 14221-02-4; Pt, 7440-06-4; Sn, 7440-31-5.

Supplementary Material Available: Listings of crystallographic data for $PtSn_2(acac)_4(PPh_3)_2$ and $Pt_2Sn_3(acac)_6(PPh_3)_2$ (29 pages). Ordering information is given on any current masthead page.

- (19) Foshida, F., Fallagata, F., Fully, F. H., Forly, J. A., Otsuka, S. J.
 Am. Chem. Soc. 1978, 100, 2063.
 (19) Boag, N. M.; Browning, J.; Crocker, C.; Goggin, P. L.; Goodfellow,
 R. J.; Murray, M.; Spencer, J. L. J. Chem. Res., Synop. 1978, 228.
- (20) Gilmore, C. J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1972, 1387
- (21) McNeese, T. J.; Wreford, S. S.; Tipton, D. L.; Bau, R. J. Chem. Soc., Chem. Commun. 1977, 390.

(22) Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058. Elian, M.;
Chen, M. M.; Mingos, D. M. P.; Hoffmann, R. Ibid. 1976, 15, 1148. Jemmis,
E. D.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2570.
(23) Guggenberger, L. J. Chem. Commun. 1968, 512.
(24) Delian, A. Hoffmann, P. M. Soc. 1980, 102, 2570.

Chem. Soc. 1963, 85, 1691.

(26) Bond, G. C.; Hellier, M. J. Catal. 1967, 7, 217. Pietropaolo, R.; Dolcetti, G.; Giustiniani, M.; Belluco, U. Inorg. Chem. 1970, 9, 549.

Effectively Hypervalent First-Row Molecules. 1. Octet Rule Violations by OLi₃ and OLi₄

Paul von Ragué Schleyer* and Ernst-Ulrich Würthwein

Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen Federal Republic of Germany

John A. Pople

Department of Chemistry, Carnegie-Mellon University Pittsburgh, Pennsylvania 15235 Received June 11, 1982

We have discovered calculationally a large number of AX_n molecules comprised of first-row elements whose unusual stoichiometries suggest violations of the octet rule.¹ The equilibrium geometries of these species involve polycoordinated central atoms, A, which therefore appear to have some hypervalent character. This communication deals with preliminary results on two such molecules, OLi3 and OLi4. The former is known experimentally; gas-phase energies are available but not the geometry.²

The octet rule is very effective in predicting the optimum stoichiometry of AX_n first-row molecules if X is hydrogen or an element (or group) toward the right of the periodic table. Thus, addition of a hydrogen atom to an oxygen atom to give the OH radical is exothermic by 101 kcal/mol; addition of a second hydrogen atom to give H₂O is even better, releasing 118 kcal/mol.³ However, the hypervalent species OH₃ and OH₄ appear to be only very weak van der Waals complexes between H_2O and H or H_2 .⁴

If the bonded atom X is lithium rather than hydrogen, the situation is completely different. To illustrate this, we consider the compounds OLi_n for n = 1-4. Table I gives calculated dissociation energies for $OLi_n \rightarrow OLi_{n-1} + Li$. (These results were obtained by minimizing the Hartree-Fock/3-21G⁵ energy to give the structure and then using the larger 6-31G* basis⁶ for MP2 correlated calculations⁷ at these geometries. Zero-point corrections were made by using harmonic frequencies from the HF/3-21G surface^{8,9} (see Table II). Clearly lithium does not respect the octet rule at all! The sequential addition of lithium atoms continues perfectly well after the second step and both OL_{i_3} and OL_{i_4} are indicated to be quite stable thermodynamically toward dissociation or loss of an electron. In further work to be described subsequently, OLi₅ and OLi₆ are also indicated to be stable molecules.

experimentally (Meter, F. F., Hauge, K. H., Hargiere, S. L. F. Lin, C. Soc. 1978, 100, 2108). Also see ref 15.
(3) Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys. Chem., Ref. Data Suppl. 1977, 1C. Huber, K. P.; Herzberg, G. "Constants of Diatomic Molecules", Van Nostrand Reinhold: New York, 1979.
(4) Kari, R. E.; Csizmadia, I. G. J. Am. Chem. Soc. 1977, 99, 4539.

(5) The GAUSSIAN 76 (Binkley, J. S.; Whiteside, R. A.; Hariharan, P. C.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. *QCPE*, **1979**, *11*, 368) and the GAUSSIAN 80 CMU (Binkley, J. S.; Whiteside, R.; Krishnan, R.; Seeger, R.; Schlegel, H. B.; DeFrees, D. J.; Topiol, S.; Kahn, L. R.; Pople, J. A. *QCPE* **1981**, *13*, 406) programs were employed. For the 3-21G basis set, see: Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.
 (6) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.

(7) Binkley, J. S.; Pople, J. A. Int. J. Quantum Chem. Symp. 1977, 99, 4899

(8) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. Symp. 1979, 13, 325.

(9) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Houk, R. J.; Hehre, W. J. Proc. Sanibel Symp., in press.

⁽¹⁸⁾ Yoshida, T.; Yamagata, T.; Tulip, T. H.; Ibers, J. A.; Otsuka, S. J.

⁽²⁴⁾ Dedieu, A.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 2074.

⁽²⁵⁾ Cramer, R. D.; Jenner, E. L.; Lindsey, R. V.; Stolberg, U. G. J. Am.

⁽¹⁾ Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762. Kossel, W. Ann. Phys. (Leipzig) 1916, 49, 229. Pauling, L. J. Am. Chem. Soc. 1931, 53, 1367. Kuznetsov, V. I., Ed. "Theory of Valency in Progress"; MIR Publishers: Moscow, 1980; p 112 f, 123 f. Perkins, C. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.; Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 7753. (2) Wu, C. H.; Kudo, H.; Ihle, H. R. J. Chem. Phys. 1979, 70, 1815. Kimura, H.; Asano, M.; Kubo, K. J. Nucl. Mater. 1980, 92, 221. It is likely that OLi4 has now been observed as well (Wu, C.H., private communication). Weakly bound lithium atom complexes with water (and other bases) have been investigated calculationally (Trenary, M.; Schaefer, H. F., III; Kollman, P. J. Am. Chem. Soc. 1977, 99, 3885; J. Chem. Phys. 1978, 68, 4047) and experimentally (Meier, P. F.; Hauge, R. H.; Margrave, J. L. J. Am. Chem.

Niblaeus, K. S. E.; Roos, B. O.; Siegbahn, P. E. M. Chem. Phys. 1977, 25, 207

 Table I. Theoretical and Experimental Dissociation Energies for OLin Compounds (kcal/mol)

		3-21G//3-21G	6-31G*//3-21G ^a	MP2/6-31G*// 3-21G ^a	zero point corrected	exptl ^b	
OLi (C	$J_{ml} \rightarrow O + Li$	33.4	37.0	71.0	69.7	80.5 ± 1.5	
OLi, (J	$\tilde{D}_{\infty h}$) \rightarrow OLi + Li	48.5	39.8	88.0	85.8	97.8 ± 2.6	
OLi, (C_{311} \rightarrow OLi ₂ + Li	54.6	45.9	44.8	43.7	50.7 ± 10	
OLi ($T_d \rightarrow OLi_3 + Li$	28.9			27.6 ^c		
OLi, ($D_{mh} \rightarrow O + Li_{2}$	78.0	74.3	144.7	141.7	152.8 ± 2.6	
OLi, ($C_{31} \rightarrow OLi + Li_{3}$	106.6	83.1	118.6	115.8	123.0 ± 10	
OLi ₄ ($T_d^{(i)} \rightarrow OLi_2 + Li_2$	79.5			77.6 ^c		

^a Uses Hartree-Fock 3-21G geometries. ^b Data from ref 2. ^c 3-21G values.

Table II. Absolute Energies (au)

species	state	3-21G//3-21G	6-31G*//3-21G	MP2/6-31G*//3-21G	ZPE ^a
$OLi(C_{m''})$	2π	-81.82836	-82.27434	-82.42450	1.3
$OLi_{2}(D_{\infty h})$	$1\Sigma_g^+$	-89.28714	-89.16918	-89.99609	3.5
$OLi_3 (C_{2\nu}) I$	² A ₁	-96.75561	-97.27371	-97.49891	4.6
(D_{ab}) II	² A, ′	-96.75483			
$OLi_{A}(T_{d})$ Va	¹ A ₁	-104.18315			5.9
$(C_{2\nu})$ IV	¹ A ₁	-104.15422			
$OLi_3^+ (\tilde{D}_{3h}) III$	¹ A ₁ '	-96.63634			
$OLi_{A}^{+}(T_{d})$ Vb	² A ₁	-104.05738			
$OLi_{a}^{\tilde{2}+}(\tilde{T}_{d})$ Vc	$^{1}A_{1}$	-103.78256			
$O(\vec{K}_h)$	³P .	-74.39366	-74.78393	-74.88004	
$Li(K_h)$	² S	-7.38151	-7.43137	-7.43137	
$\operatorname{Li}_{2}(D_{\infty h})$	¹ Σg ⁺	-14.76925	-14.86692	-14.88545	0.5

^a Zero point energy, in kcal/mol. Based on 3-21G frequencies.

Peculiar stoichiometries do not require hypervalence. Thus, the third lithium in OLi₃ might be connected to another lithium, or to both lithiums, but not to oxygen. Such species would certainly be interesting but would not involve hypervalent oxygen. However, this is not the case. We have examined a large number of OLi₃ structures computationally. The only minimum we have been able to find at the 3-21G level is I (Chart I), with C_{2v} symmetry. The closely related D_{3h} structure, II, is only 0.5 kcal/mol higher in energy but is indicated by diagonalizing the force constant matrix to be a transition structure on the potential-energy surface. The O-Li bond lengths in I and II are shorter than in OLi_3^+ (III), an octet molecule included for comparison. Two minima have been found on the OLi₄ potential-energy surface. IV is shown by Mulliken population analysis to be best regarded as a OLi_3^+ , Li^- ion pair.¹⁰ However, this is not the most stable form; the global OLi₄ minumum, some 18.2 kcal/mol lower in energy, has a simple tetrahedral geometry (Va).

What is the nature of the "hypervalent bonding" in OLi, and OLi₄? Hypervalent molecules with second-row central atoms are common and use low-lying d orbitals. This cannot be the explanation in the first row since d orbitals are less readily available energetically; in any case, the phenomenon is found with the 3-21G basis, which has no d-type functions. Some indication of the nature of the bonding can be obtained from the occupied molecular oribtals and the Mulliken analysis. Consider tetrahedral OLi₄ with ten valence electrons. These occupy molecular orbitals $(3a_1)^2(2t_2)^6(4a_1)^2$. The $3a_1$ and $2t_2$ orbitals are analogous to the valence orbitals in the tetrahedral carbon molecules CH₄ and CLi₄. Occupation of these four orbitals leads to AX bonding, but net antibonding among the substituent atoms, X. The HOMO in OLi₄ is the totally symmetric orbital $4a_1$ with an additional radial node. The OLi σ^* antibonding character of this MO is reduced by some $p\sigma$ character on lithium. The computed bond lengths give evidence for some OLi bond weakening, being 1.583 Å in OLi₂, 1.661 Å (average) in OLi₃, and 1.728 Å in OLi₄.

However, the $4a_1$ orbital is *bonding* between all pairs of lithiums. Since the eight electrons in $3a_1$ and $2t_2$ largely fill the octet on the oxygen atom, $4a_1$ has large coefficients on the lithium atoms (particularly the diffuse outer function of the 3-21G Li basis). It follows that the contribution to Li-Li bonding from the six

pair-wise combinations is quite large. These effects are reflected in the total (atom-atom) Mulliken overlap populations. The series of tetrahedral molecules OLi_4^{2+} (Vc), OLi_4^+ (Vb), and OLi_4 (Va) with 8, 9, and 10 valence electrons is instructive. For all these species, the oxygen-lithium overlap population is nearly constant (0.33 \rightarrow 0.30), but the lithium-lithium overlap population increases from 0.00 for (OLi_4^{2+}) to 0.10 (OLi_4^+) to 0.16 (OLi_4) when more electrons are present. Thus the decrease in the O-Li distance along the same series (1.789, 1.745, 1.728 Å) is due to more favorable interactions among the lithium atoms rather than changes in O-Li bonding.

The Mulliken populations indicate the nature of these species in another way. The lithium in OLi has donated 0.55 electron to oxygen. In OLi₂, the total donation to oxygen has increased to 0.81 electron, and a second partially ionic LiO bond has formed. The negative charge on oxygen in OLi₃, -0.87, is only slightly larger and no further increase is indicated in OLi₄ or even in OLi₅.

⁽¹⁰⁾ See: Klimenko, N. M.; Zakzhevskii, V. G.; Charkin, O. P. Koord. Khim., in press.

Similarly, there is no significant change in the oxygen changes in OLi_4^{2+} (-0.884), OLi_4^{++} (-0.875), and OLi_4 (-0.871). Thus, the extra electrons in the nominally hypervalent species are not associated with oxygen but rather contribute to Li-Li bonding. The overall structure can be described in terms of an oxygen bonded within a cationic lithium cage, e.g., $O^-Li_3^+$ or $O^-Li_4^+$.

Our further calculations indicate this phenomenon to be quite general. We have already investigated hyperstoichiometric lithium species involving hydrogen and all first-row and some second-row elements.¹¹ The other alkali metals behave like lithium. ONa₃ and ONa₄, which were reported recently,¹² have calculated structures and bonding like OLi3 and OLi4.11 "Curious suboxides in which there are covalent M-M bonds",¹³ e.g., O₂Rb₉ and O_3Cs_{11} , also are known experimentally.¹⁴ The present work also is pertinent to surface complexes between oxygen species and lithium and other metals.¹⁵

Acknowledgments. This work was supported by the Fonds der Chemischen Industrie and the National Science Foundation (CHE-79-01061) and by an award of the von Humboldt Foundation. We thank Dr. C. H. Wu for discussions.

Registry No. OLi₃, 69235-02-5; OLi₄, 8290-38-9.

(11) Schleyer, P. v. R. Plenary Lecture, Fourth International Congress of Quantum Chemistry, Uppsala, Śweden, June 1982. (12) Peterson, K. I.; Dao, P. D.; Castleman, A. W., Jr. "Abstracts of

(13) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", 4th ed.; Wiley: New York, 1980; p 254.

 (14) Simon, A. Struct. Bonding (Berlin) 1979, 36, 81.
 (15) McLean, W.; Schultz, J. A.; Pedersen, L. G.; Jarnagin, R. C. Surf. Sci. 1979, 83, 354. Schultz, J. A.; McLean, W.; Pedersen, L.; Jarnagin, R. C. Chem. Phys. Lett. 1979, 64, 230. Pedersen, L. G.; Jarnagin, R. C. Ibid. 1980, 72, 156.

Evidence Implicating cyclo-Diphosphates as Intermediates in Reactions of Nucleoside Phosphorothioates with Cyanogen Bromide

R. Douglas Sammons,[†] Hsu-Tsu Ho,[‡] and Perry A. Frey*.[‡]

Department of Chemistry, The Ohio State University Columbus, Ohio 43210 and Institute for Enzyme Research, University of Wisconsin Madison, Wisconsin 53706

Received June 24, 1982

Adenosine 5'-(1-thiodiphosphate) (ADP α S) and adenosine 5'-(2-thiotriphosphate) (ATP β S) can be desulfurized to ADP and ATP by reacting them with cyanogen bromide. In $H_2^{18}O$ both the α - and β -phosphoryl groups of ADP and the β - and γ phosphoryls of ATP become labeled with ¹⁸O. The incorporation of isotope into the terminal phosphoryl groups is at the expense of incorporation in place of sulfur in the substrates.

Reaction of 10 mM ATP β S with 20 mM CNBr in H₂¹⁸O (95% ¹⁸O) at pH 7 in 0.1 M potassium phosphate produced [¹⁸O]ATP in 55% yield. [¹⁸O]ATP was systematically degraded so that P_{α} , P_{β} , and P_{γ} were separately isolated as inorganic phosphate. These samples were analyzed for ¹⁸O by ³¹P NMR analysis of the ¹⁸Oinduced isotope shifts, ^{1a,b} which showed that P_{β} and P_{γ} contained equivalent ¹⁸O enrichment while P_{α} was unenriched. Reaction of 100 mM ADP α S with 400 mM CNBr in $H_2^{18}O$ (98% ¹⁸O) at pH 10.6 in 0.5 M potassium tetraborate produced [¹⁸O]ADP. The proton-spin-decoupled ³¹P NMR spectrum consisted of two doublets exhibiting the chemical shifts and coupling constants of

Figure 1. ³¹P NMR spectrum of (S_P) -ADP α S $(\alpha^{18}O_2)$. The protonspin-decoupled spectrum of (S_P) -ADP α S $(\alpha^{18}O_2)$ 1 in Scheme I, was obtained on the Bruker WM-300. The P_{α} signals are the doublet patterns at the left in the figure and those for P_{β} are the doublets at the right in the figure. The chemical shift values for the ¹⁸O-containing species are given in the text. (S_p) -ADP α S $(\alpha^{18}O_2)$ was synthesized by specific phosphorylation of AMPS(18O2).2.3a-d

Scheme I

 P_{α} and P_{β} in ADP.² Both signals were accompanied by isotope shifted signals of approximately equal intensities attributed to the presence of ¹⁸O in equal amounts of both positions.

To shed light on the basis for the dilution of isotope at the position of substitution, we investigated the reaction of $ADP\alpha S$, $\alpha^{18}O_2$ (1, Scheme I, Ado = adenosine), with cyanogen bromide in H_2o . The ³¹P NMR spectrum of 1 is shown in Figure 1. The signals for P_{β} are the upfield pair of doublets, an isotope shifted signal at δ -6.642 owing to the high ¹⁸O enrichment in the bridging position, and a smaller unshifted signal at δ -6.620 reflecting the presence of some ¹⁶O in the bridge. The P_{α} signal is more complex, consisting of four doublets representing the four possible ¹⁸O

Papers", National Meeting of the American Chemical Society, Las Vegas, NV, Apr 1982; American Chemical Society: Washington, DC, 1982; PHYS 173

[†]The Ohio State University.

[‡]University of Wisconsin.

^{(1) (}a) Cohn, M.; Hu, A. J. Am. Chem. Soc. 1980, 102, 913-916. (b) Jarvest, R. L.; Lowe, G. J. Chem. Soc., Chem. Commun. 1979, 364-366.

⁽²⁾ Sheu, K.-F. R.; Frey, P. A. J. Biol. Chem. 1977, 252, 4445-4448. (2) Sheu, K.-F. R., Frey, F. A. J. Blot. Chem. 1971, 252, 445-4466.
 (3) (a) Sheu, K.-F. R.; Richard, J. P.; Frey, P. A. Biochemistry 1979, 18, 5548-5556.
 (b) Brody, R. S.; Frey, P. A. Ibid. 1981, 20, 1245-1252.
 (c) Richard, J. P.; Frey, P. A. J. Am. Chem. Soc. 1978, 100, 7757-7758.
 (d) Richard, J. P.: Frey, P. A. Ibid. 1982, 104, 3476-3481.